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Scheme S1. The schematic illustration for preparation of the SPEs. 

 

 

 

Figure S1. SEM images and the corresponding optical photos of SPE films. a,d,e) pure PEO 

film; b,f,g) PEO1-TBMACl1-SN3 SPE film; and c,h,j) PEO1-TBMACl1-SN4 SPE film. 
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Figure S2. a-h) Nyquist plots of the binary PEO-TBMACl and ternary PEO-TBMACl-SN 

SPEs at various temperatures. i) the equivalent circuit for the impedance plots of the SPEs. 
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Figure S3. LSV scans (5 mV s
-1

) of the PEO1-TBMACl1-SN3 SPEs: a,c) 313 K; b,d) 323 K. 
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Figure S4. Cycling performance of the FeOCl cathodes at different discharge terms in the 

liquid electrolyte (0.5 M PP14Cl in PP14TFSI). The FeOCl powders were prepared by a 

thermal decomposition of FeCl3·6H2O. The FeOCl cathode was fabricated by mixing the 

as-prepared FeOCl powders, PVDF and carbon black in the mass ratio of 60:10:30 and a 

subsequent slurry coating with graphite foil. Discharge and charge testing of the FeOCl 

cathodes were implemented galvanostatically (10 mA g
-1

) at different discharge cut-off 

voltages (i.e., different theoretical discharge capacities and volume changes): greed solid 

circle, 2.5 V; blue solid circle, 2.2 V; red solid circle, 2.1 V; black solid circle, 1.6 V. It can be 

clearly seen that the FeOCl shows a severe capacity decay when a higher discharge capacity 

was delivered. A superior cycling performance was received at a lower discharge capacity. 

The high capacity would cause a large volume change by the phase transformation, which 

may interrupt the electrical contact in the cathode and thus a deterioration of cycling stability.  
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Figure S5. a) EIS patterns of the FeOCl cathodes in the battery systems using 

PEO1-TBMACl1 or PEO1-TBMACl1-SN3 SPE at 313 K. b) the equivalent circuit. Re 

represents the resistance arising from the cell components. Rb and CPE1, which are associated 

with the medium-frequency semicircle, are the bulk resistance and its associated capacitance. 

Rct is the charge transfer resistance and CPE2 is the associated double-layer capacitance that 

represents the interfacial compatibility between the electrode and the electrolyte. W0 is the 

Warburg impedance related to ion diffusion. 
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Figure S6. a) XRD patterns of the as-prepared FeOCl powders and the as-prepared FeOCl 

cathodes at the rest, discharge or charge state in the first cycle. b) XRD patterns of the 

as-prepared FeOCl powders and the as-prepared FeOCl cathodes treated by ACN, SN/ACN, 

TBMACl/ACN, or PEO/ACN at 298 or 313 K for 8 h. 
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Figure S7. SEM images and the EDS patterns of the as-prepared FeOCl cathodes before and 

after the first cycle: a,d) rest; b,e) fully discharged; and c,f) fully charged. The white squares 

in a,b,c) correspond to the collecting areas of EDS. 
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Figure S8. a-c) XPS survey spectra of the FeOCl cathodes, PEO1-TBMACl1-SN3 SPE and the 

Li anode after the rest, fully discharge and fully charge in the first cycle. d) XPS region 

spectra of Cl 2p in the as-prepared FeOCl powders, the as-prepared FeOCl cathodes at 

different electrochemical states in the first cycle. 
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Figure S9. XPS region spectra of Fe 2p in the as-prepared FeOCl powders and the 

as-prepared FeOCl cathode after the rest. 
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Figure S10. a) Cross-section SEM of the battery structure. SEM images and the 

corresponding EDS results of the FeOCl cathode, PEO1-TBMACl1-SN3 SPE and lithium 

anode after the rest: b-g,p) the FeOCl cathode; h-j,q) the Li anode; k-o,r) the SPE.  
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Figure S11. a) Cross-section SEM of the battery structure. SEM images and the 

corresponding EDS results of the FeOCl cathode, PEO1-TBMACl1-SN3 SPE and lithium 

anode after the first discharge: b-g,q) the FeOCl cathode; h-k,r) the Li anode; l-p,s) the SPE. 
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Figure S12. a) Cross-section SEM of the battery structure. SEM images and the 

corresponding EDS results of the FeOCl cathode, PEO1-TBMACl1-SN3 SPE and lithium 

anode after the first charge: b-g,p) the FeOCl cathode; h-j,q) the Li anode; k-o,r) the SPE. 
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Table S1. The assignments of FTIR spectrum for PEO  

 

Wavenumbers (cm
-1

) Vibration mode References 

2946, 2875, 2858 CH2 stretching [1,2] 

1466 CH2 scissoring [1] 

1360, 1341 CH2 wagging doublet [1] 

1279, 1240 CH2 twisting [1] 

1146, 1095, 1060 C-O-C stretching triplet [1] 

960, 945 CH2 symmetric rocking [1] 

841 CH2 asymmetric rocking [1] 
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Table S2. The assignments of FTIR spectrum for SN  

 

Wavenumbers (cm
-1

) Vibration mode References 

2990 CH2 asymmetric stretching, 

gauche and trans 

[3] 

2952 CH2 symmetric stretching, 

gauche and trans 

[3] 

2858 CH2 symmetric stretching, 

gauche 

[3] 

2257 CN stretching, gauche and 

trans 

[3] 

1429, 1337 CH2 stretching, trans [3] 

1268 CH2 wagging, trans [4] 

1233, 1196, 1160 CH2 twisting, gauche and trans [5] 

1008 CH2, gauche [3] 

967 C-CN, gauche [3] 

922 C-CN, trans [3] 

817 CH2 bending, gauche [3] 

763 CH2 rocking, trans [3] 
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Table S3. The assignments of FTIR spectrum for TBMACl  

 

Wavenumbers (cm
-1

) Vibration mode References 

2960, 2875, 2735 CH3 symmetric stretching [6] 

1471 CH3 asymmetric bending [6] 

1383 CH3 symmetric bending [6] 

1275 CH2 twisting [7] 

1179 C-C-C-N symmetric stretching [8] 

1106 C-C-N symmetric stretchin [8] 

1064 C-C asymmetric stretching [8] 

1026 C-C-N symmetric stretching [8] 

974 C-N symmetric stretching [7] 

889 CH2 and CH3 rocking [8] 

800 C-C-C symmetric stretching [7] 

742 CH3 rocking [6] 
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Table S4. The ionic conductivities of the as-prepared SPEs at different temperatures 

 

 Ionic conductivity (S cm
-1

) 

Samples 298 K 313 K 323 K 333 K 343 K 

PEO5-TBMACl1 1.7×10
-8

 4.4×10
-8

 1.0×10
-7

 2.8×10
-7

 5.9×10
-7

 

PEO3-TBMACl1 2.6×10
-8

 6.6×10
-8

 1.9×10
-7

 4.1×10
-7

 1.0×10
-6

 

PEO2-TBMACl1 1.2×10
-7

 2.3×10
-7

 5.3×10
-7

 1.2×10
-6

 2.6×10
-6

 

PEO1-TBMACl1 3.1×10
-7

 5.8×10
-7

 1.1×10
-6

 2.4×10
-6

 5.8×10
-6

 

PEO1-TBMACl2 5.0×10
-8

 1.3×10
-7

 2.6×10
-7

 9.4×10
-7

 1.7×10
-6

 

PEO1-TBMACl1-SN1 6.7×10
-7

 1.3×10
-6

 1.9×10
-6

 3.3×10
-6

 1.1×10
-5

 

PEO1-TBMACl1-SN2 2.1×10
-6

 5.1×10
-6

 8.0×10
-6

 2.0×10
-5

 4.0×10
-5

 

PEO1-TBMACl1-SN3 1.2×10
-5

 2.6×10
-5

 5.3×10
-5

 8.9×10
-5

 1.5×10
-4
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